02-05-2021



O(log n) O(log n) O(n) O(n) O(n) B-Tree: O(log n) O(log n) O(log n) O(log n) O(log n) O(log n) Red-Black tree: O(log n) O(log n) O(log n) O(log n). Big o cheatsheet with complexities chart Big o complete Graph!Bigo graph1 Legend!legend3!Big o cheatsheet2!DS chart4!Searching chart5 Sorting Algorithms chart!sorting chart6!Heaps chart7!graphs chart8. HackerEarth is a global. O(1) – Constant Time. Pronounced: 'Order 1', 'O of 1', 'big O of 1' The runtime is constant, i.e. Big-O Cheat Sheet; Big-O Cheat Sheet. Sorting algorithms are a fundamental part of computer science. Being able to sort through a large data set quickly and efficiently is a problem you will be likely to encounter on nearly a daily basis. Here are the main sorting algorithms: Algorithm. Big-O Cheat Sheet In this appendix, we will list the complexities of the algorithms we implemented in this book. Data structures We have covered some of the most used data structures in this book. The following table presents the big-O notation for the insert, delete, and search operations of the data structures: Data Structure Average cases Worst cases.

Sorting algorithms are a fundamental part of computer science. Being able to sort through a large data set quickly and efficiently is a problem you will be likely to encounter on nearly a daily basis.

Here are the main sorting algorithms:

Lead Sheet Notation

AlgorithmData StructureTime Complexity - BestTime Complexity - AverageTime Complexity - WorstWorst Case Auxiliary Space Complexity
QuicksortArrayO(n log(n))O(n log(n))O(n^2)O(n)
Merge SortArrayO(n log(n))O(n log(n))O(n log(n))O(n)
HeapsortArrayO(n log(n))O(n log(n))O(n log(n))O(1)
Bubble SortArrayO(n)O(n^2)O(n^2)O(1)
Insertion SortArrayO(n)O(n^2)O(n^2)O(1)
Select SortArrayO(n^2)O(n^2)O(n^2)O(1)
Bucket SortArrayO(n+k)O(n+k)O(n^2)O(nk)
Radix SortArrayO(nk)O(nk)O(nk)O(n+k)

Another crucial skill to master in the field of computer science is how to search for an item in a collection of data quickly. Here are the most common searching algorithms, their corresponding data structures, and time complexities.

Here are the main searching algorithms:

AlgorithmData StructureTime Complexity - AverageTime Complexity - WorstSpace Complexity - Worst
Depth First SearchGraph of |V| vertices and |E| edges-O(|E|+|V|)O(|V|)
Breadth First SearchGraph of |V| vertices and |E| edges-O(|E|+|V|)O(|V|)
Binary SearchSorted array of n elementsO(log(n))O(log(n))O(1)
Brute ForceArrayO(n)O(n)O(1)
Bellman-FordGraph of |V| vertices and |E| edgesO(|V||E|)O(|V||E|)O(|V|)

Graphs are an integral part of computer science. Mastering them is necessary to become an accomplished software developer. Here is the data structure analysis of graphs:

Sheet
Node/Edge ManagementStorageAdd VertexAdd EdgeRemove VertexRemove EdgeQuery
Adjacency ListO(|V|+|E|)O(1)O(1)O(|V| + |E|)O(|E|)O(|V|)
Incidence ListO(|V|+|E|)O(1)O(1)O(|E|)O(|E|)O(|E|)
Adjacency MatrixO(|V|^2)O(|V|^2)O(1)O(|V|^2)O(1)O(1)
Incidence MatrixO(|V| ⋅ |E|)O(|V| ⋅ |E|)O(|V| ⋅ |E|)O(|V| ⋅ |E|)O(|V| ⋅ |E|)O(|E|)

Storing information in a way that is quick to retrieve, add, and search on, is a very important technique to master. Here is what you need to know about heap data structures:

Sheet

Music Sheet Notation

HeapsHeapifyFind MaxExtract MaxIncrease KeyInsertDeleteMerge
Sorted Linked List-O(1)O(1)O(n)O(n)O(1)O(m+n)
Unsorted Linked List-O(n)O(n)O(1)O(1)O(1)O(1)
Binary HeapO(n)O(1)O(log(n))O(log(n))O(log(n))O(log(n))O(m+n)
Binomial Heap-O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))
Fibonacci Heap-O(1)O(log(n))*O(1)*O(1)O(log(n))*O(1)